Abstrato
A doença coronavírus-19 (COVID-19) é causada pela síndrome respiratória aguda grave coronavírus 2 (SARS-CoV-2). O longo período de incubação desse novo vírus, em sua maioria assintomático, mas contagioso, é uma das principais razões para sua rápida disseminação pelo mundo. Atualmente, não há tratamento mundialmente aprovado para COVID-19. Portanto, as comunidades clínica e científica têm esforços conjuntos para reduzir o impacto severo do surto. Pesquisas sobre doenças infecciosas emergentes anteriores criaram um conhecimento valioso que está sendo explorado para reaproveitamento de medicamentos e desenvolvimento acelerado de vacinas. No entanto, é importante gerar conhecimento sobre os mecanismos de infecção do SARS-CoV-2 e seu impacto na imunidade do hospedeiro, para orientar o desenho de terapêuticas específicas de COVID-19 e vacinas adequadas para imunização em massa. Espera-se que os sistemas de distribuição em nanoescala desempenhem um papel fundamental no sucesso dessas abordagens profiláticas e terapêuticas. Esta revisão fornece uma visão geral da patogênese do SARS-CoV-2 e examina as abordagens imunomediadas atualmente exploradas para os tratamentos COVID-19, com ênfase em ferramentas nanotecnológicas.

Principal
A pandemia da doença coronavírus-19 (COVID-19) causada pela síndrome respiratória aguda grave coronavírus 2 (SARS-CoV-2), foi relatada pela primeira vez em Wuhan, China, em dezembro de 2019. Desde então, espalhou-se globalmente, já infectando milhões de pessoas em todo o mundo. Em 30 de junho de 2020, 213 países notificaram casos de COVID-19, com um número total que atingiu acima de 10,3 milhões, sendo a maioria nos EUA (2,6 milhões), Brasil (1,4 milhões), Rússia (640 mil), Índia ( 548 mil) e Reino Unido (314 mil). Os EUA apresentam o maior número de óbitos (126 mil), seguidos do Brasil (58 mil), Reino Unido (44 mil) e Itália (35 mil). A taxa mundial de casos fatais em todas as comunidades é de 4,9%.
Os coronavírus (CoVs) são vírus com envelope que prendem o ácido ribonucleico (ssRNA) não segmentado, de sentido positivo e de fita simples. O tamanho do genoma varia de 26 a 32 kb, sendo o maior vírus de RNA conhecido. SARS-CoV-2 terminal 3′ codifica proteínas estruturais, incluindo pico (s) de glicoproteas 1 , 2 , de membrana (M) glicoproteínas 3 , bem como do envelope (E) 4 e (N) proteínas da nucleocápside 2 , 5 (Fig. 1 ) Além dos genes que codificam proteínas estruturais, existem regiões genômicas específicas que codificam proteínas virais necessárias para a replicação 6 , além de outras proteínas não estruturais, como a protease tipo papaína (PLpro)7 e protease principal do coronavírus.
Parece haver polimorfismo genético do ACE-2 com risco aumentado de comorbidades específicas – hipertensão, doença cardiovascular e diabetes (36, 37). O impacto das variantes alélicas foi revisado em um modelo computadorizado e foi demonstrado que é provável que algumas variações de ACE-2 se liguem mais fortemente à proteína spike SARS-COV-2 (38). A hipótese atual de autoimunidade postula que níveis mais elevados de ACE-2 solúvel, ou ligação conformacional aumentada à proteína spike, aumenta a probabilidade de que a entidade combinada seja processada por uma célula apresentadora de antígeno como parte do vírus. Isso pode levar à produção de anticorpos contra ACE-2, que desencadeia respostas de hipersensibilidade do Tipo 2 e 3,

Embora a maioria das doenças infecciosas tenha como alvo ambos os extremos do espectro de idade, devido a respostas imunes mal desenvolvidas ou prejudicadas, o COVID-19 tem um impacto desproporcional sobre os idosos. A ACE-2 solúvel pode explicar o paradoxo da alta mortalidade em idosos sem uma taxa de mortalidade infantil elevada semelhante. Níveis elevados de ACE-2 solúvel foram observados em comorbidades associadas a maior mortalidade em COVID-19 (39). Existem níveis indetectáveis no soro de indivíduos saudáveis (40) e existe uma correlação entre a ocorrência de ECA-2 solúvel e a idade do indivíduo (41). Pesquisas recentes indicaram que ACE-2 solúvel é o fator de risco mais significativo para mortalidade cardiometabólica e pode ser relevante no COVID-19.
SARS-CoV-2 Spike S1 (16-685) Protein, Avi-His-tag |
|||
E80021 | EpiGentek |
|
|
SARS-CoV-2 Spike S1 RBD (V367F) Protein, Avi-His-tag |
|||
E80023 | EpiGentek |
|
|
SARS-CoV-2 Spike S1 (13-665) Protein, Fc Fusion, Avi-tag |
|||
E80020 | EpiGentek |
|
|
SARS-CoV-2 Spike S1 (16-685) Protein, Fc Fusion, Avi-tag |
|||
E80022 | EpiGentek |
|
|
SARS-CoV-2 Spike S1 RBD Protein, Human Fc-Fusion, Avi-Tag |
|||
E80025 | EpiGentek |
|
|
SARS-CoV-2 Nucleocapsid Protein, Avi-His-tag |
|||
E80027-2 | EpiGentek | 100 ul | EUR 4087.6 |
Recombinant SARS-CoV-2 Spike Glycoprotein(S) (D614G), Partial |
|||
E80028-2 | EpiGentek | 100 ul | EUR 860.2 |
SARS-CoV-2 Spike S1 RBD Protein, Avi-His-tag |
|||
E80024-2 | EpiGentek | 1 ml | EUR 4995.1 |
SARS-CoV-2 Spike S1 RBD Protein, Mouse Fc-fusion |
|||
E80026-2 | EpiGentek | 50 ul | EUR 823.9 |
SARS-CoV-2 Spike S1 (16-685) Protein, Avi-His-tag |
|||
E80021-2 | EpiGentek | 1 ml | EUR 4276.8 |
SARS-CoV-2 Spike S1 RBD (V367F) Protein, Avi-His-tag |
|||
E80023-2 | EpiGentek | 1 ml | EUR 3934.7 |
SARS-CoV-2 Spike Peptide |
|||
9083P | ProSci | 0.05 mg | EUR 235.5 |
Description: (NT) SARS-CoV-2 Spike peptide |
SARS-CoV-2 Spike Peptide |
|||
9087P | ProSci | 0.05 mg | EUR 235.5 |
Description: (CT) SARS-CoV-2 Spike RBD peptide |
SARS-CoV-2 Spike Peptide |
|||
9091P | ProSci | 0.05 mg | EUR 235.5 |
Description: (IN) SARS-CoV-2 Spike peptide |
SARS-CoV-2 Spike Peptide |
|||
9095P | ProSci | 0.05 mg | EUR 235.5 |
Description: (IN) SARS-CoV-2 Spike peptide |